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Abstract

Background: The nonstructural carbohydrates (NSCs) of plants are posited to be crucial traits for the resistance and
resilience of plants to climate change-induced drought and flooding. However, the potential effects of persistent
drought and waterlogging on the dynamics of the NSCs and the underlying mechanisms are still poorly understood.

Methods: We measured the NSCs concentrations and pool size, photosynthetic rate and biomass of Robinia
pseudoacacia L. seedlings for both 2015 and 2016 under five soil water treatments: 3%, 8%, 17%, 24% and 34% soil
water content, representing extreme drought (ED), moderate drought (MD), the control group (CG), field capacity (FC)
and waterlogging (WL) stresses, respectively. We observed the relationship between the pool size of NSCs and the
survival of seedlings under water stress (drought and waterlogging) for 30 days in greenhouse.

Results: Compared with CG, the net photosynthetic rate decreased 91%, 67%, 34% and 71%, and the biomass
decreased by 37%, 15%, 16% and 33% under ED, MD, FC and WL, respectively. The total NSC (TNSC) concentration was
significantly increased by 154% under ED after 10 days and sharply decreased by 50% under ED after 30 days. The
concentrations of soluble sugars (SS) were significantly increased by 100% under MD after 10 days and sharply decreased
by 60% under ED after 30 days. Compared with GC, the response of NSCs, photosynthetic rate and biomass under ED
were more dramatic than that under WL. The pool sizes of fructose and sucrose were larger under ED and WL, but the
maximum pool size of starch occurred under the CG. The depletion of NSCs was not observed under ED at the end of
the experiments in both 2015 and 2016.

Conclusions: Our results indicate that the dynamics of NSCs is an important physiological feature of plant adaptation
and resistance to drought and waterlogging. In addition, high sugars concentrations are beneficial for the plants during
the short-term extreme drought and the longer term mild drought or waterlogging.
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Background

Extreme event-induced tree mortality occurs globally and
is likely to be exaggerated by future climate change, par-
ticularly drought and flood (Patz et al. 2005; Bréda et al.
2006; Huntington et al. 2006; Adams et al. 2009; Allen et
al. 2010; Pachauri et al. 2014). As is well known, the events
of extreme drought and floods will affect forest ecosys-
tems along with rising temperatures, heat waves, and
changing interactions between pests/pathogens and hosts
(Bonan 2008; Allen et al. 2010). However, the underlying
mechanisms of drought-induced tree mortality remain un-
clear (McDowell et al. 2008a, b; Sala 2009; Sala et al.
2010). In ideal condition over the time, tree mechanism is
largely governed by the increasing stand level competition
and social status on an individual tree (Saud et al. 2016,
2018), but under drought stress, trees are vulnerable to
carbon starvation. Previous studies suggested that trees
were vulnerable to carbon starvation under drought stress
(Parker and Patton 1975; Bréda et al. 2006; McDowell et
al. 2008a, b; Adams et al. 2009; Sala et al. 2010). However,
there are the elusive and complex phenomena of non-
structural carbohydrates (NSCs) in plants in response to
drought that are induced by different drought features
(ie., intensity and duration) and tree species, size, age and
tissues (Sala et al. 2012; Hartmann et al. 2013; Palacio et
al. 2014). Therefore, the lack of consensus among these
studies on the effect of water availability on the NSC dy-
namics suggests that further studies are necessary to eluci-
date the underlying mechanisms (McDowell et al. 2008a,
b; O’Grady et al. 2013).

Although studies on the effect of drought on NSCs is
extensive, there has been few studies focusing on the ef-
fect of waterlogging (Board 2008; Parent et al. 2008;
Nguyen et al. 2018). Sala et al. (2012) and Palacio et al.
(2014) reported the manner in which we think about
modeling tree growth and reviewed the literature on the
minimum thresholds of nonstructural carbohydrates
(NSC) under multiple environmental stresses. Some stud-
ies found that there was lack of direct evidence for the
carbon-starvation hypothesis to explain water-induced
mortality in plant (Sala 2009; Sala et al. 2010, 2012). More-
over, approximately 16% of land has been affected by
waterlogging, resulting in severe economic losses (Luan et
al. 2018). The assessment of the relationship between
plant waterlogging and changes in NSCs concentration
and allocation is very limited.

Some previous research suggested that different drought
intensities induced different physiological responses of
plants (Ditmarova et al. 2010; Osakabe et al. 2014) which
may induce various NSC dynamics in trees to resist and
survive under different water-stressed conditions
(McDowell et al. 2008a, b). According to the previous hy-
pothesis, mild drought stress may not result in the ex-
haustive depletion of NSCs, which may occur under
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severe drought stress, and trees may die from irreversible
xylem cavitation (McDowell et al. 2011). However, there is
a lack of research on the underlying mechanisms of NSC
dynamics, particularly under drought (McDowell et al
2008a, b) and waterlogging conditions.

In addition, not only drought intensity but also drought
duration changes the NSC allocation and dynamics
(McDowell et al. 2011). In the early stage of drought, the
NSC concentrations may increase because the metabolic
rate precedes the reduction in the photosynthetic rate
(Korner 2003; Osakabe et al. 2014). However, as the
drought stress persists, the reduction in the metabolic rate
precedes that of the photosynthetic rate (Hsiao 1973; Mc-
Dowell et al. 2011). Many previous studies focused only
on the initial and final stage of the short-term drought
manipulation (Regier et al. 2009, 2010; Anderegg and
Anderegg 2013). Some previous studies also found that
waterlogging as the dominant water stress within tree pits
and thus avoidance of waterlogging conditions is required
to stimulate increased tree growth (Grey et al. 2018; Ismail
2018). Therefore, it is necessary to understand how the
duration of drought (McDowell and Sevanto 2010; Sala et
al. 2010) and waterlogging (Sairam et al. 2008) changes
the NSC dynamics in plants.

It has been demonstrated that different species have dis-
tinct functions and sizes of the NSC pool of different com-
ponents (e.g., fructose, glucose, sucrose, starch, fructans
and lipids) (Hoch et al. 2003; Wiirth et al. 2005; Millard et
al. 2007; Palacio et al. 2014). Recently, there have been
studies on the drought-induced allocations in carbon as-
similation, transport, and utilization between the above-
and below-ground tree tissues (Day et al. 2008; Klein et al.
2016). However, the accurate estimate of the NSC dynam-
ics in whole trees is difficult and challenging for mature
trees, because it has been measured only by C isotopes in
a few studies (Ryan 2011; Dietze et al. 2014).

Therefore, it is necessary to study the response mecha-
nisms of the NSC concentration of different tree species
under drought and waterlogging stress with different in-
tensities and durations. Robinia pseudoacacia (black lo-
cust) is a widely planted drought-resistant tree species in
the Loess Plateau of China (Mantovani et al. 2014; Cao
et al. 2018). It has unique features of rapid growth,
drought resistance, resistance to barren soil and nitrogen
fixation, and it can be used a model tree species to study
the effect of water stress (drought and waterlogging) on
tree growth and physiological acclimation. In this study,
we manipulated different levels of the soil water content
(ED: extreme drought, MD: mild drought, CG: control
group, FC: field capacity and WL: waterlogging) and
duration (10-day, 20-day and 30-day) to: 1) investigate
the effect of drought intensity and duration on the NSC
dynamics of R. pseudoacacia seedlings; and 2) examine
the photosynthetic rate and plant growth to reveal the
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underlying mechanisms involved in NSC dynamics
driven by drought and excessive water stresses. We hy-
pothesized that 1) drought and waterlogging would sig-
nificantly affect the NSC concentration, especially under
ED condition; 2) a decrease in NSCs concentration
would be observed at the later stage of the treatment,
but not at the initial stage; and 3) plant NSCs respond
more strongly to drought than to waterlogging.

Methods

Experimental design

We used a randomized block design with 4 replicates in
2015 and 2016, respectively. The NSC measurements
were conducted on two-year old R pseudoacacia L.
seedlings grown in a greenhouse (located in the North-
west A&F University, Yangling, Shaanxi, China) for two
consecutive years, 2015 and 2016. Seventy-two seedlings
were used in both years. The seedlings were grown in
30-cm diameter and 40-cm deep pots. Each pot con-
tained a mixture of nutrient-poor sand and local field
soil (Cumulic Anthrosol) with a ratio of 1:5. The local
soil was sieved (4-mm sieve) to remove roots, coarse or-
ganic matter and coarse sand prior to mixing. We fertil-
ized all the pots with one-quarter strength Hoagland
solution after transplantation to the pots. The seedlings
were grown for four and a half months prior to the be-
ginning of the water stress treatments to minimize
biases due to the difference in the initial weight and/or
height of the seedlings.

The seedlings were grown in five different soil mois-
ture regimes (Table 1), ranging from extreme drought
(no watering, ED) to permanently waterlogged (WL)
with interim stages at water-holding capacities of 30%
(MD), 70% (CG) and field capacity (FC). We randomly
assigned the seedlings to different treatments. All the
treatments were started on August 1 in 2015 and 2016,
and maintained for 30 days under ambient light condi-
tions prior to the measurement of NSCs. Reflectometer
probes (M002498, Theta Probe ML, Houston Texas
USA) were used to monitor the moisture content, and
the pots were watered whenever the water content var-
ied by > 1% of the target level. The seedlings in the ED
experiment underwent wilting, leaf yellowing and defoli-
ation during the 30-day treatment; we did not harvest
the seedlings but used the average soil water content
(SWC) measured gravimetrically at the end of the
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experiment to deduce the overall water status of this
treatment group (Table 1).

Nonstructural carbohydrate measurements

We measured NSCs with four randomly selected seed-
lings in both 2015 and 2016 prior to the start of the
water treatments. NSC were measured at the end of the
experiment on one randomly selected seedling from
each water treatment from each block. The leaves, twigs,
stems and roots were sampled separately for each seed-
ling. The whole-seedling concentration and the pool of
the TNSC is defined as the sum of the soluble sugars
(including fructose, glucose and sucrose) and starch con-
centrations and pools, respectively.

The SS concentrations were measured using 1 g of dry
biomass. SS was extracted using a warm 80% ethanol so-
lution for 30 min and centrifuged at 5000xg for 10 min;
this procedure was repeated 3 times. The supernatant
(soluble sugars: fructose, glucose and sucrose, included)
was analyzed for SS using an HPLC 1260 (Agilent 1260
Infinity LC, Burladingen, Germany) (Wilson et al. 1995;
Raessler et al. 2010; Quentin et al. 2015). We extracted
starch from the ethanol-insoluble residues after the etha-
nol was first removed by distillation extraction to meas-
ure SS. The starch in the residue was then released by
boiling in 10 mL deionized water for 15 min. After cool-
ing to room temperature, 10mL 9.2M HCIO, was
added, and the mixture was shaken for 15 min. The mix-
ture was centrifuged at 5000xg for 10 min. An additional
extraction was conducted using 10 mL 4.6 M HCIO,.
The supernatant was retained, combined, and stored at
-20°C to determine the starch concentration based on
the absorbance at 620nm using a spectrophotom-
eter (Yemn & Willis, 1954; Kagan et al. 2014). The per-
chloric acid method was used to measure the starch. We
calculated the whole-seedling NSC concentrations (C)
using the following formula:

C_C1><m1+Ct><mt+CS><mS+Cr><mr
B my + my + mg + m;

Msampling = my + my + ms + m,

where C represents the whole-seedling NSC concentra-
tions (g-g~ 1, ¢ is the leaf NSC concentrations (gg” b,
my is the mean leaf biomass (g), C, is the twig NSC con-
centrations (g-g~ '), m; is the mean twig biomass (g), Cs
is the stem NSC concentrations (g-g~ '), m; is the mean

Table 1 Effect of water status on gravimetric soil moisture across treatments, where Ext is extreme drought (no watering), MD and
CG are at 30% and 70% of field capacity, FC is field capacity and WL is waterlogged

Year Ext MD cG FC WL
2015 (246 + 0.12)% (723 £ 0.13)% (16481 + 0.20)% (2402 + 0.23)% (3331 £ 043)%
2016 (270 £ 0.16)% (7.89 £ 042)% (16.85 £ 0.18)% (2465 £ 0.21)% (3396 £ 041)%

The values are means + SE
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stem biomass (g), C, is the root NSC concentrations
(gg™ ') and m, is the mean root biomass (g). Mampling
represents the whole-seedling biomass (g).

Soil moisture and seedling biomass

The gravimetric soil water content was determined on a
20-g sample of sieved (2-mm mesh) and homogenized
soil from each pot by oven drying at 105 °C for 24 h. We
determined the biomass of the leaves, twigs, stems and
roots separately for all seedlings. The materials were
oven-dried for 48 h at 70 °C in kraft bags (12 cm x 15 c¢m)
to a constant weight and then weighed.

Statistical analysis

A one-way analysis of variance (ANOVA) was used to
examine the relationship between the SWC and
dependent variables among the water treatments at the
time of harvest. The data normality and homogeneity of
variance were tested using the Shapiro-Wilk and Levene
tests, respectively. We also tested the concentrations and
pools of NSCs (soluble sugars, fructose, glucose, sucrose
and starch) in each seedling for normality. In addition,
we used a two-way ANOVA with a water treatment as a
fixed factor and a block as a random factor to test the
difference in SS and starch among the water treatments.
The total seedling biomass as a covariate to account was
included to scale the relationships between the plant size
and response variables (Minucci et al. 2017). The
familywise type I error rate for contrasts was controlled
at a = 0.05 using a Bonferroni correction. If there was no
interaction, a post hoc separation of means was con-
ducted using Tukey’s honestly significant difference
(HSD) test. We also used a repeated-measures analysis
of variance (ANOVA) to determine the effects of the soil
water stresses (ED, MD, CG, FC and WL) and treatment
durations (0-day, 10-day, 20-day and 30-day) on the net
photosynthetic rates, dry biomass and the TNSC (soluble
sugars = fructose + glucose + sucrose; starch) concentra-
tions in each tissue. The assumption of sphericity was
tested using Mauchly’s sphericity test (Mauchly 1940).
The Bonferroni test was used to identify significant dif-
ferences in the mean net photosynthetic rates, dry bio-
mass, and NSCs concentrations in each tissue. The
results were considered significant when P <0.05. All
statistical analyses were performed using SPSS v.20.0
(SPSS, Inc., Chicago, USA).

Results

The effect of drought intensity, waterlogging and duration
on the photosynthetic rate and biomass

The effects of water stress (i.e., both soil water content
and treatment duration) on net photosynthetic rates and
biomass were all significant (P < 0.01; Figs. 1 and 2, Table
1). The repeated measures ANOVA indicated that the
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changes in the net photosynthetic rate under ED, MD
and WL over time were significant (P < 0.01; Fig. 1a and b).
The lowest values of the photosynthetic rate under FC and
WL were observed on the first sampling (10-day).

The biomass under the drought stresses (i.e., ED and
MD) decreased by 56% and 23% under ED and MD, re-
spectively, compared to the initial value (0-day) (Fig. 2a
and b). The biomass under ED decreased consistently
over the course of experiment (P<0.01) whereas it
showed an opposite trend under CG. Under WL, the
biomass first decreased and then increased with time.

The TNSC and SS concentrations in whole seedlings

The effects of both soil water intensity and duration on
the concentrations of TNSC and SS were all significant
(P <0.01; Fig. 3), except for MD and CG. The results of
repeated measures ANOVA showed that the changes in
the TNSC and soluble sugar concentrations under ED,
FC and WL over time were significant (P <0.01;
Fig. 3a-d). The maximum of TNSC and SS under ED,
MD, FC and WL were observed on the first sampling
(10-day). However, the increments of the concentration
of TNSC and SS under ED and MD in the first sampling
were much higher than those under FC and WL. Com-
pared to CG, the TNSC concentration under ED, MD,
FC and WL increased by 114.8%, 68.9%, 21.8% and
48.8% on 10-day, respectively. Compared to CG, the SS
concentration under ED, MD, FC and WL increased by
207.2%, 136.6%, 64.5% and 105.7% on 10-day, respectively.
After the second (20-day) and third (30-day) sampling, the
TNSC and SS concentrations were rapidly reduced under
ED and slightly reduced under FC and WL compared to
CG. Under MD treatment, the TNSC and SS concentra-
tions kept relatively stable after their increase.

The concentrations of NSC components (fructose, glucose,
sucrose and starch)

Both the soil water treatment intensity and duration sig-
nificantly influenced the starch concentrations in seed-
lings (P<0.01; Fig. 4). Under the CG treatment, the
starch concentrations gradually increased with time, and
the highest concentrations were observed at the end of
the experiment in both years. Under the MD, FC and
WL treatments, the starch concentrations showed simi-
lar patterns with significant variation (P <0.01; Fig. 4g
and h). The starch concentration under ED significantly
decreased over time. The starch concentration was the
highest under the CG treatment in all three sampling
periods, and the lowest concentrations were found in
ED (Fig. 4g and h). During the experimental period, the
starch concentrations in the seedlings under the ED,
MD, FC and WL treatments were significantly decreased
at the three samplings, while that under the CG treat-
ment was significantly increased compared to the initial
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Fig. 1 Dynamics in the net photosynthetic rate (A,). The plot shows A, at the beginning of the experiments (initial, 0-day, black bar), first sampling
(10-day, red bar), second sampling (20-day, green bar) and at the end of the 30-day (third sampling, yellow bar) water status treatments in 2015 (a)
and 2016 (b) on the whole seedling level. The treatments are ED: extreme drought, MD: 30% of the field capacity (FC), CG: 70% of the field capacity,
FC: field capacity and WL: permanently waterlogged. Values are back-transformed averages and error bars represent 95% confidence intervals. Note
that the upper-case letter refers to the significant differences among treatments and the lower-case letter refers to the significant
differences within-subject

(P <0.01; Fig. 4g and h). Under ED, FC and WL, similar
patterns of variation were observed between the fructose
and sucrose concentrations that peaked at the first sam-
pling and decreased with time thereafter. Under MD, the
fructose and sucrose concentrations were maintained at a
high level, and they were smaller than that under ED but
larger than the rest of the treatments. (Fig. 4a, b, e and f).
The glucose concentrations under all the treatments were
much lower than that of the fructose and sucrose.
However, the glucose concentrations significantly in-
creased under the ED, MD, FC and WL treatments

compared to CG (P<0.01; Fig. 4c and d). Compared to
CG, the increased amplitude of the glucose concentration
under FC and WL was smaller than those under ED and
MD. The glucose concentrations under the CG were the
lowest among the measurements (Fig. 4c and d).

The ratios of soluble sugars and starch in the seedlings

The effects of the soil water treatment intensity and dur-
ation on the ratios of soluble sugars to starch (RSS) in
the seedlings were significant in both years (P <0.01;
Fig. 5), except for CG and FC. Similar variation in the
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Fig. 2 Dynamics in dry biomass. The plot shows that biomass at the beginning of the experiments (initial, 0-day, black bar), first sampling (10-day,
red bar), second sampling (20-day, green bar) and at the end of the experiments (third sampling, 30-day, yellow bar) water status treatments in
2015 (@) and 2016 (b) on the whole seedling level. The treatments are ED: extreme drought, MD: 30% of the field capacity (FC), CG: 70% of the
field capacity, FC: field capacity and WL: permanently waterlogged. Values are the back-transformed averages, and the error bars represent 95%
confidence intervals. Note that the upper-case letter refers to the significant differences among treatments and the lower-case letter refers to the
significant differences within-subject

patterns of the ratios of the soluble sugars to starch was
found between MD and WL, under which the ratios tended
to increase over time. Under the CG treatment, the ratio
tended to decrease at 10-day (P < 0.01; Fig. 5a and b). Except
for the ratios of the sampling on 30-day, the ratios were sig-
nificantly higher under ED than those under all the other
treatments (P < 0.01; Fig. 5a and b). However, in each treat-
ment, the ratios were significantly higher under ED, MD, FC
and WL than that under the CG treatment (P < 0.01).

The ratios of above- and below-ground in NSC, SS and
starch pools of seedlings

The effects of the soil water treatment intensity and dur-
ation on the ratios of above- and below-ground TNSC,
soluble sugars and starch (RAB) of seedlings were sig-
nificant in both years (P <0.01; Fig. 6a-f). Similar varia-
tions in the patterns of the RAB ratios of the TNSC and
soluble sugars were found across treatments. The ratios
tended to be decreased under the high soil water
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Fig. 3 Dynamics in total nonstructural carbohydrates (TNSC) and soluble sugar (SS) concentrations. The plot shows that the concentrations of
TNSC and SS at the beginning of the experiments (initial, 0-day, black bar), first sampling (10-day, red bar), and second sampling (20-day, green
bar) and at the end of the experiments (third sampling, 30-day, yellow bar) water status treatments in 2015 (a, ¢) and 2016 (b, d) on the whole
seedling level. The treatments are ED: extreme drought, MD: 30% of the field capacity (FC), CG: 70% of the field capacity, FC: field capacity and
WL: permanently waterlogged. Values are the back-transformed averages and the error bars represent 95% confidence intervals for the total NSC
and soluble sugars. Note that the upper-case letter refers to the significant differences among treatments and the lower-case letter refers to the
significant differences within-subject

Soil water conditions (2016)

treatments (FC and WL) over time, but increasing trend
of RAB was observed under FC on 30-day (P<0.01;
Fig. 6a-d). Under the CG, the RABs of TNSC and SS

tended to increase stably. However, for each treatment,
the RABs were significantly higher under CG and FC than
that under the ED, MD and WL treatments (P < 0.01).
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Fig. 4 Dynamics in the concentrations of fructose, glucose, sucrose and starch. The concentrations at the beginning of the experiments (initial,
0-day, black bar), first sampling (10-day, red bar), second sampling (20-day, green bar) and at the end of the experiments (third sampling, 30-day,
yellow bar) water status treatments on the whole seedling level in 2015 (a, ¢, e and g) and 2016 (b, d, f and h). The treatments are ED: extreme
drought, MD: 30% of the field capacity (FC), W70: 70% of the field capacity, FC: field capacity and WL: permanently waterlogged. Values are back-
transformed averages, and the error bars represent 95% confidence intervals for fructose and glucose. Note that the upper-case letter refers to
the significant differences among treatments and the lower-case letter refers to the significant differences within-subject
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Fig. 5 Dynamics in the ratio of soluble sugars and starch (RSS). The plot shows that RSS at the beginning of the experiments (initial, 0-day, black
bar), first sampling (10-day, red bar), second sampling (20-day, green bar) and at the end of the experiments (third sampling, 30-day, yellow bar)
water status treatments in 2015 (@) and 2016 (b) on the whole seedling level. The treatments are ED: extreme drought, MD: 30% of the field capacity
(FQO), W70: 70% of the field capacity, FC: field capacity and WL: permanently waterlogged. Values are back-transformed averages and error bars represent
95% confidence intervals. Note that the upper-case letter refers to the significant differences among treatments and the lower-case letter refers to the
significant differences within-subject
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Discussions

Effects of the treatment intensities on the total non-structural
carbohydrates dynamics

We found that the NSC concentrations under extreme
drought (ED) were significantly lower than those under
the control group (CG) and high soil water conditions
(FC and WL, included) at 20-day and 30-day. These

results support our first hypothesis that drought stress
would significantly influence the NSC concentration,
particularly under ED at the initial stage of the treat-
ments (10-day), which is consistent with recent findings
(Zhang et al. 2015; Cao et al. 2018). However, their stud-
ies did not investigate different NSC components
(fructose, glucose and sucrose) of soluble sugars. In
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contrast, waterlogging only had moderate legacy effects
on the NSC concentrations and pools, and subsequently
plant growth and productivity were not significantly af-
fected. Even some historic studies showed that higher
initial NSC pools were not advantageous for resistance
and survival in plants (Pretzsch et al. 2018). But we ob-
served that bigger NSC pool sizes play a key role under
drought and waterlogging conditions during short-term.

Effects of the treatment intensities on the soluble sugars
dynamics

It is important to note that soluble sugars play a crucial
role in osmotic adjustment, vascular transport, and the
repair of embolisms (Sala et al. 2012). The increase in
soluble sugar concentrations has been reported in sev-
eral previous studies (Latt et al. 2001; Silva et al. 2010).
Increased concentrations of soluble sugars can remit the
tree water potential, maintain cell turgor, and enhance
water absorption by the roots from the soil (Handa et al.
1983; Silva et al. 2010; Williams et al. 2012). However,
under drought conditions, our results were generally
consistent with the previous findings that leaves can save
carbon and directly make carbon available for plant
growth (Kozlowski 1992; McDowell et al. 2008a, b;
Dietze et al. 2014). In addition, the previous results sug-
gested that plants used less and stored greater NSC, par-
ticularly conifer species (Michelot et al. 2012; Thomas
and Martin 2012). However, a previous study found that
broadleaf deciduous seedlings primarily contain more
NSC in the roots than that at the whole-seedling level
(Villar-Salvador et al. 1999, 2015). Other studies showed
that there were no significant differences in the NSC
concentrations between tree species (Hoch et al. 2003;
Zhang et al. 2014). Our results are consistent with the
generally accepted observation that higher NSC concen-
trations occurred under drought and high soil water
conditions (FC and WL) compared to normal moisture
conditions (Zhang et al. 2014, 2015; Cao et al. 2018).
Our results were also consistent with those of the previ-
ous studies showing that the starch and soluble sugars
have a transformational relationship under ambient
pressure. This is mainly due to the reduction of tempor-
arily stored starch in plants to compensate for the reduc-
tion of carbon assimilation and the maintenance of
respiration and survival required for net photosynthesis
from leaves. In particular, starch reaches a minimum
during extreme environmental stresses (Chantuma et al.
2009; Li et al. 2013a, b). The reduction in biomass could
be due to limitations in growth, structural carbon deg-
radation and tissues (leaves and twigs) drop. In addition,
the features of starch in plants facilitate its use as a
long-term and accessible carbon storage, while soluble
sugars act as an intermediate, ready-to-use energy and
structure for growth and to resist stresses under biotic
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and abiotic conditions (Wiirth et al. 2005; Richardson et
al. 2013; Bellasio et al. 2014; Richardson et al. 2015).

Effects of the treatment intensities on fructose, glucose
and sucrose dynamics

Our results on the concentration of the SS components
showed that there were similar patterns of variation in
the TNSC and SS under drought stresses. However, the
glucose concentration has the lowest value among the
three components of SS. Maybe because glucose is in-
volved in some biochemical synthetic processes and
masked in the form of other compounds. Glucose has
hormone-like functions and controls many vital pro-
cesses through mostly unknown mechanisms in plants,
may be more sensitive to stress signals (Cheng et al.
2002; Le6n and Sheen 2003; Sheen 2014). The patterns
of fructose and sucrose are consistent with recent stud-
ies (Li et al. 2011; Tauzin and Giardina 2014). In living
plants, soluble sugars not only provide energy and car-
bon skeletons but also serve as signaling molecules to
adapt to environmental stresses. Information on plant
glucose and sucrose signaling is available, but to date, no
fructose-specific signaling pathway has been reported (Li
et al. 2011). In our study, fructose patterns were similar to
those of sucrose. We could also conclude that fructose
participated in signal and osmotic adjustments, although
the results showed that the glucose variation trends were
the most sensitive, especially under ED and MD.

Similarities and differences between drought and high
soil moisture

In addition, drought stress led to an increased NSC con-
centration more significantly than those under field cap-
acity (FC) and waterlogged (WL) across the experiments
in both 2015 and 2016. Differences among the effects of
soil moisture intensity on the NSC concentrations may
result from the changes in the carbon source or sink and
the underlying carbon allocation mechanisms. Some his-
torical studies have found that under carbon source lim-
ited conditions (from photosynthesis), plants can
increase their NSC storage and allocate it to survive at
the expense of regular growth (Pantin et al. 2013; Wiley
2013; Saffell et al. 2014). In addition, Wiley (2013) found
that trees can maintain higher NSC levels to survive
with lower growth under moderate drought, while plants
under severe drought (ED) had significantly lower NSC
at the end of the experiments. In our study, net photo-
synthetic rates have been decreasing along with the
drought and exceed-CG (FC and WL) stress gradients
(Fig. 1a and b). As a result, the NSC concentrations
under MD and WL were slightly higher than those
under the CG, while NSCs under ED were significantly
higher at the first sampling and lower than those under
the CG at the second and third sampling (Fatichi et al.
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2014). In addition, the synthesis of starch under ED and
MD stress were inhibited to a greater extent than those
under WL and FC, and the activity of hydrolases is
sharply activated, leading to an increase in the ratio of
soluble sugars to starch. Latt et al. (2001) reported the
conversion of starch to sugars in all the tissues of the
trees under drought stress. In our study, an increase in
the concentration of soluble sugars and the ratios of sol-
uble sugars to starch was also observed under all
drought stresses (ED and MD). Silva et al. (2010) pro-
posed that K" and Na* play crucial roles in osmotic ad-
justment under normal soil water conditions, while
soluble sugars are more important under relatively
stressful conditions, which may be due to the effects of
hydraulic limitations that emerged earlier than carbon
starvation (Adams et al. 2017). These results suggest that
the R. pseudoacacia seedlings can adjust the osmotic po-
tential through different pathways under drought and
high soil moisture, because R. pseudoacacia could in-
crease sugar concentrations to mitigate the increasing
drought stress under ED and MD.

Under high soil water conditions (FC and WL), our re-
sults showed that the TNSC and SS were also increased,
with slight fluctuations, but to a lesser degree than those
under ED and MD. Waterlogging stops root growth and
function because of the oxygen shortages that restrict root
respiration. The concentrations of potentially toxic com-
pounds increase in anoxic soils, which can enter through
roots, damaging both root and above-ground tissues.
Plants have some potential defense mechanisms to buffer
waterlogging stresses through germinating aerial roots to
survive. Hartmann et al. (2013, 2015) conducted experi-
ments examining high soil water mechanisms and re-
ported on those on conifers (Hartmann et al. 2013, 2015;
Hartmann and Trumbore 2016). They found that carbon
metabolism below-ground is related to the mechanism of
tree mortality. Our results on fructose, glucose and su-
crose showed that there were similar patterns of variation
with the TNSC and SS, except for the lowest concentra-
tion of glucose. The whole process was observed, espe-
cially under drought conditions.

Effects of treatment duration on the NSCs dynamics

All the total non-structural carbohydrates (NSCs) con-
centration and dynamics of Robinia pseudoacacia L.
seedlings under drought treatments were basically con-
sistent but vary with different soil water treatments from
the beginning to the final sampling. However, the NSC
concentrations under ED decreased from 10-day to
30-day. In contrast, under MD, they significantly and
stably increased over the course of the experiments in
both 2015 and 2016. In addition, the net photosynthetic
rate and biomass were significantly and synchronously
decreased under ED, MD and WL but increased at
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20-day under WL (see Figs. 2 and 3). Therefore, the car-
bon assimilation was reduced except for the middle and
late period of WL in 2015 and 2016. These results sup-
port our second hypothesis that a decrease in NSCs
would be observed when the drought period was longer
but not during the initial drought phase. In addition, we
observed that the concentrations of the TNSC, as well as
the soluble sugars, were significantly greater at the
10-day than that at the 20-day and 30-day sampling
times. However, previous research showed that there
were similar results for red oak but the opposite results
for white pine (coniferous species) (Richardson et al.
2015). Therefore, species type, plant tissues, sampling
time and the protocol of the selection of sampling trees
may be attributed to the discrepancy in these results
(Dietze and Moorcroft 2011; Zhang et al. 2014). The
NSC concentrations (TNSC, SS, fructose, glucose and
sucrose) in most plants increased with decreased pre-
cipitation (Korner 2003; Wiirth et al. 2005), which is
supported for our results and primarily due to the in-
creased soluble sugars produced by starch degradation
under drought conditions (Fig. 5). Waterlogging and the
subsequent oxygen stress can lead to detrimental growth
effects as it induces important physiological responses
by plants and changes the nonstructural carbohydrates
allocation in seedlings. Previous studies showed that sto-
mata conductance and hydraulic conductivity are dimin-
ished under waterlogging (Vartapetian and Jackson 1997;
Parent et al. 2008) and often a reduction in the rate of
photosynthesis can be observed (Dreyer 1994; Pezeshki
and DeLaune 1996). Metabolism in roots changes from
aerobic (mitochondrial) respiration to anaerobic fermen-
tation, leading to a depletion of carbohydrate reserves
(Parent et al. 2008). However, the depletion of carbohy-
drate reserves was not observed in our studies, maybe
due to the treatment durations were too short to be ob-
served, and maybe mainly due to germinate some aerial
roots at 20-day, so that once again unclogged the NSC
pathways. As a consequence of these disturbances of
vital physiological and metabolic processes, reductions
of above-ground growth and main root growth are com-
monly observed in woody plants subjected to soil water-
logging condition (Frye and Grosse 1992; Kozlowski and
Pallardy 2002; Glenz et al. 2006).

Effects of treatment intensity and duration on the NSCs
dynamics

Previous studies have shown that the dynamics of NSCs
in drought vary considerably among species and with
the duration and intensity of the stress (Adams et al.
2009; McDowell et al. 2011). When converted into the ra-
tio of soluble sugars to starch (RSS), the dynamics of the
RSS differed significantly at four time sampling (P < 0.01,
Fig. 5), due to variation among the replicates and
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microenvironments, and significant differences were
noted among the treatments (Additional file 1: Figures S1
and S2). These phenomena can help to understanding of
the interpretation of starch conversion into soluble sugars
in plants to provide energy and regulate the osmotic po-
tential to alleviate and resist drought and waterlogging
over the short-term. Our results are partially consistent
with the previous experiments in which herbaceous
plants, short-lived with respect to woody plants, show
constant or increased carbon storage during drought, very
likely because of reduced translocation (Miiller et al.
2001). The increase in the carbon storage pool and con-
centration also reflects the role of soluble sugars in osmo-
regulation and reactive oxygen species (ROS) regulation,
both of which lead to basal alkalization, which destroys
membrane function (Miller et al. 2008). However, photo-
synthesis was lower for longer duration than the initial
stage, demonstrating that factors in addition to the nega-
tive carbon balance trigger plant carbohydrate metabolism
(McDowell et al. 2008a, b; Adams et al. 2009, 2013;
Sevanto et al. 2014).

Previous research has indicated that the timescale of
various physiological processes during different drought
stages plays an important role in understanding the NSC
dynamics (Fatichi et al. 2014). In the short term, adapta-
tion to the lag in photosynthesis may lead to the accu-
mulation of starch and soluble sugars (Hsiao 1973;
Korner 2003). In the medium term, the decline in photo-
synthesis before respiration can reduce the storage of
NSCs due to their metabolism (Hsiao 1973; McDowell
et al. 2011; Beier et al. 2012). In the long term, complex
domestication mechanisms may be used to fine-tune
tree growth via photosynthesis in order to ensure the
storage of NSC (Kozlowski 1992; Hoch et al. 2003;
Fatichi et al. 2014). However, the consumption of NSCs
occurs under conditions in which trees cannot grow in
harmony with photosynthesis (McDowell et al. 2008a,
b). In our study, we observed higher NSC concentrations
under both drought and waterlogging stress compared
to those under the field capacity (FC), suggesting that
the time frame of 30 d (from the initiation of soil water
treatment to the third time sampling) was long enough
for the downregulation of photosynthesis. The lower, but
continuous, increase in the NSC concentrations under
MD and ED from the beginning to the end might be the
result of the acclimation mechanisms that allowed the
seedlings to adjust the balance of carbon sink and
source, preventing NSC depletion and sustaining sur-
vival and reserve accumulation under drought stress
(Scartazza et al. 2013). The significant decrease in the
NSC concentrations in the leaves, twigs and stems dur-
ing the growing season under ED at the end of the ex-
periment may result from the poor adjustment of
growth, photosynthesis, and translocation of NSCs to

Page 13 of 17

metabolism. At the end of the two-year experiments, as
the net photosynthetic rates under ED and MD signifi-
cantly decreased, the seedlings under the CG maintained
relatively sufficient NSC supplies by decreasing their sol-
uble sugar storage and may increase starch reserves,
while the seedlings under ED, whose growth have de-
creased or even stopped prior to this period, consumed
NSCs to maintain normal metabolism.

Additionally, NSCs play fundamental roles in plant
germination, growth, reproduction, and resistance and
may also be conclusive to plant survival under negative
stresses (Kozlowski 1992). In particular, NSCs are mobi-
lized in trees to maintain respiration during stress, build
biomass and sustain new growth in the future and sup-
ply energy for any adaptive responses to drought
(Kozlowski 1992; Barbaroux et al. 2003). As is well
known, R. pseudoacacia is an annular porous and Legu-
minosae species that needs to obtain new leaf reserves
before germination to reach a large part of its annual
stem growth (Bréda and Granier 1996; Landhdusser and
Lieffers 2011). Annular porous species have a higher re-
spiratory capacity than diffuse porous species (Barbaroux
and Breda 2002; Barbaroux et al. 2003), and there are
higher basal respiration rates and Q10 values in the
plants (Edwards and Hanson 1996). Therefore, R pseu-
doacacia requires a larger amount of NSC under
drought conditions than those under high moisture con-
ditions, which is supported by our study in which the
NSC concentrations decreased significantly under ED at
the end of the two-year experiments. In addition, the
RSS in the seedlings would continue to decrease from
0-day to 30-day but would still be higher than the initial
value as well as the value of the control (CG) over time.
If the starch is consumed in large quantities, it indicates
that the plant needs soluble sugars to resist the stress.
However, even under the ED conditions, the starch and
soluble sugars were not exhausted at 30 days. Conse-
quently, R pseudoacacia seedlings under ED may be
more vulnerable to high temperature and other biotic
stresses during the experiments. Therefore, it would re-
quire additional study to explore the impact of high
temperature on the variation of NSCs under drought
and waterlogging conditions (Galvez et al. 2013). How-
ever, there are still several limitations in this study: 1)
We studied the mechanisms of NSC dynamic changes
under continuous drought and waterlogging conditions
but did not clearly define the tipping point of NSCs for
tree mortality, which used membrane failure and chloro-
phyll fluorescence to predict the plant mortality under
drought (Guadagno et al. 2017); 2) We primarily studied
the partitioning and dynamics of the TNSC, SS, starch,
fructose, glucose and sucrose concentrations on the
whole-tree scale. The change status did not use isotope
techniques to accurately reveal the NSC allocation
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mechanisms; 3) we measured photosynthesis and bio-
mass as covariates to clarify the NSC dynamic mecha-
nisms without combining hydraulic characteristics. We
should combine carbon starvation with hydraulic failure
to explore the response of the trees to drought and
waterlogging to understand possible mechanisms, and
further research on this direction is urgently needed.

Conclusions

The main conclusions of this study are as follows: 1) the
intensity and duration of soil water stress have signifi-
cant effects on the NSC dynamics of Robinia pseudoaca-
cia seedlings. 2) We observed a significant decrease in
NSC concentration under severe drought stress, and the
NSC concentration under MD and FC remained high
levels. The NSC concentration under WL conditions re-
covered near the initial value. 3) Drought causes seed-
lings to preferentially increase NSC in below-ground
tissues. While FC and WL can promote the distribution
of NSCs mainly in the above-ground tissues. In sum-
mary, the dynamic characteristics (for strength and dur-
ation) and component types of NSCs in drought and
waterlogged are important for elucidating the relation-
ship between NSC dynamics and soil water stress.
However, further research is needed to investigate the
NSC dynamics during the dormant season, as well as
the NSC allocation and storage characteristics of plant
tissues under drought and waterlogging stress.
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